Abstract
Abstract
We study constraints from causality and unitarity on 2 → 2 graviton scattering in four-dimensional weakly-coupled effective field theories. Together, causality and unitarity imply dispersion relations that connect low-energy observables to high-energy data. Using such dispersion relations, we derive two-sided bounds on gravitational Wilson coefficients in terms of the mass M of new higher-spin states. Our bounds imply that gravitational interactions must shut off uniformly in the limit G → 0, and prove the scaling with M expected from dimensional analysis (up to an infrared logarithm). We speculate that causality, together with the non-observation of gravitationally-coupled higher spin states at colliders, severely restricts modifications to Einstein gravity that could be probed by experiments in the near future.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference85 articles.
1. T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified Gravity and Cosmology, Phys. Rept. 513 (2012) 1 [arXiv:1106.2476] [INSPIRE].
2. P. Bull et al., Beyond ΛCDM: Problems, solutions, and the road ahead, Phys. Dark Univ. 12 (2016) 56 [arXiv:1512.05356] [INSPIRE].
3. M. Ishak, Testing General Relativity in Cosmology, Living Rev. Rel. 22 (2019) 1 [arXiv:1806.10122] [INSPIRE].
4. P. Bueno, P.A. Cano, V.S. Min and M.R. Visser, Aspects of general higher-order gravities, Phys. Rev. D 95 (2017) 044010 [arXiv:1610.08519] [INSPIRE].
5. S. Weinberg, Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev. 135 (1964) B1049 [INSPIRE].
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献