Author:
De Curtis Stefania,Delle Rose Luigi,Guiggiani Andrea,Muyor Ángel Gil,Panico Giuliano
Abstract
Abstract
The dynamics of the true-vacuum bubbles nucleated during a first-order phase transition is affected by the distribution functions of the particle species in the plasma, driven out-of-equilibrium by the travelling domain wall. An accurate modelling of this phenomenon is relevant for a quantitative description of phase transitions in the early universe and for the determination of the corresponding cosmic relics, such as, among the others, the stochastic background of gravitational waves. We address this problem by developing a new spectral method devised for a fast and reliable computation of the collision integral in the Boltzmann equations. In a scalar singlet extension of the Standard Model chosen as a benchmark scenario, we test our algorithm, determining the bubble speed and profile, and we assess the impact of the out-of-equilibrium dynamics.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference37 articles.
1. C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].
2. C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with LISA: an update, JCAP 03 (2020) 024 [arXiv:1910.13125] [INSPIRE].
3. S. Kawamura et al., The Japanese space gravitational wave antenna DECIGO, Class. Quant. Grav. 23 (2006) S125 [INSPIRE].
4. S. Kawamura et al., The Japanese space gravitational wave antenna: DECIGO, Class. Quant. Grav. 28 (2011) 094011 [INSPIRE].
5. W.-R. Hu and Y.-L. Wu, The Taiji Program in Space for gravitational wave physics and the nature of gravity, Natl. Sci. Rev. 4 (2017) 685 [INSPIRE].
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献