Probing quantum decoherence at Belle II and LHCb

Author:

Alok Ashutosh KumarORCID,Banerjee SubhashishORCID,Chundawat Neetu Raj SinghORCID,Sankar S.UmaORCID

Abstract

Abstract With the advent of Belle II and the LHCb upgrade, the precision measurements of various B-Physics observables are on cards. This holds significant potential for delving into physics beyond the standard model of electroweak interactions. These measurements can also serve as means to establish limits on phenomena occurring at much finer length scales, such as quantum decoherence, which may arise due to potential discreteness in space-time or non-trivial topological effects. In this work, we set up the formalism to investigate the impact of quantum decoherence on several potential observables in B meson systems. The approach employs the trace-preserving Kraus operator formalism, extending unitary evolution to non-unitary dynamics while maintaining complete positivity. In this formalism, the decoherence effects are parametrized in terms of a single parameter. Through the analysis of purely leptonic, semileptonic, and non-leptonic decays of B mesons, we identify observables that could, in principle, be influenced by decoherence. The theoretical expressions are provided without neglecting the impact of decay width difference (∆Γ) and CP violation in mixing. Considering that many of these observables can be measured with high precision using the abundant data collected by LHCb and Belle II, our formalism can be applied to establish constraints on the decoherence parameter through multiple decay channels. This offers an alternative set-up for such studies, which, at present, are predominantly conducted in the neutrino sector.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3