Two paths towards precision at a very high energy lepton collider

Author:

Buttazzo Dario,Franceschini Roberto,Wulzer Andrea

Abstract

Abstract We illustrate the potential of a very high energy lepton collider (from 10 to 30 TeV center of mass energy) to explore new physics indirectly in the vector boson fusion double Higgs production process and in direct diboson production at high energy. Double Higgs production is found to be sensitive to the anomalous Higgs trilinear coupling at the percent level, and to the Higgs compositeness ξ parameter at the per mille or sub-per mille level thanks to the measurement of the cross-section in the di-Higgs high invariant mass tail. High energy diboson (and tri-boson) production is sensitive to Higgs-lepton contact interaction operators at a scale of several tens or hundred TeV, corresponding to a reach on the Higgs compositeness scale well above the one of any other future collider project currently under discussion. This result follows from the unique capability of the very high energy lepton collider to measure Electroweak cross-sections at 10 TeV energy or more, where the effect of new physics at even higher energy is amplified. The general lesson is that the standard path towards precision physics, based on measurements of high-statistics processes such as single and double Higgs production, is accompanied at the very high energy lepton collider by a second strategy based on measurements at the highest available energy.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference49 articles.

1. J. P. Delahaye et al., Muon Colliders, arXiv:1901.06150 [INSPIRE].

2. ALEGRO collaboration, Towards an Advanced Linear International Collider, arXiv:1901.10370 [INSPIRE].

3. The International Muon Collider collaboration, https://muoncollider.web.cern.ch.

4. A. Robson et al., The Compact Linear e+ e− Collider (CLIC): Accelerator and Detector, arXiv:1812.07987 [INSPIRE].

5. N. Bartosik et al., Detector and Physics Performance at a Muon Collider, 2020 JINST 15 P05001 [arXiv:2001.04431] [INSPIRE].

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3