Abstract
Abstract
We argue for a relation between the supersymmetry breaking scale and the measured value of the dark energy density Λ. We derive it by combining two quantum gravity consistency swampland constraints, which tie the dark energy density Λ and the gravitino mass M3/2, respectively, to the mass scale of a light Kaluza-Klein tower and, therefore, to the UV cut-off of the effective theory. Whereas the constraint on Λ has recently led to the Dark Dimension scenario, with a prediction of a single mesoscopic extra dimension of the micron size, we use the constraint on M3/2 to infer the implications of such a scenario for the scale of supersymmetry breaking. We find that a natural scale for supersymmetry signatures is$$ M=\mathcal{O}\left({\Lambda}^{\frac{1}{8}}\right)=\mathcal{O}\left(\textrm{TeV}\right). $$
M
=
O
Λ
1
8
=
O
TeV
.
This mass scale is within reach of LHC and of the next generation of hadron colliders. Finally, we discuss possible string theory and effective supergravity realizations of the Dark Dimension scenario with broken supersymmetry.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference47 articles.
1. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
2. Supernova Cosmology Project collaboration, Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE].
3. Supernova Search Team collaboration, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE].
4. M. Montero, C. Vafa and I. Valenzuela, The dark dimension and the Swampland, JHEP 02 (2023) 022 [arXiv:2205.12293] [INSPIRE].
5. C. Vafa, The String landscape and the swampland, hep-th/0509212 [INSPIRE].
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献