Phenology and the response of photosynthesis to irradiance and temperature gradient in the herbal drug red alga, Chondria armata (Rhodomelaceae, Ceramiales) from Kagoshima, Japan

Author:

Terada RyutaORCID,Yoshizato Kyosuke,Murakami Kazuma,Nishihara Gregory N.ORCID

Abstract

AbstractSeasonal changes in the size of the herbal drug red alga Chondria armata (Rhodomelaceae, Ceramiales) were investigated in Kagoshima, Japan, which is near the northern distributional limit in the western Pacific. Additionally, its photosynthetic response to irradiance and temperature was examined using dissolved oxygen sensors and a pulse amplitude modulation (PAM)-chlorophyll fluorometer. This alga was observed in tidepools throughout the year; its height and weight were greatest in December and the lowest in April and May. The net photosynthesis of the photosynthesis–irradiance (P–E) curve determined at 28°C quickly saturated at 113 µmol photons m-2 s-1, with minimal inhibition even at 1000 µmol photons m-2 s-1. The gross photosynthesis of the photosynthesis–temperature (P–T) curved over 8 to 40°C, measured at 500 µmol photons m-2 s-1, peaked at 30.1°C and decreased rapidly below 20°C and above 36°C, respectively. Similarly, the effective quantum yield (ΔF/Fm') after a 3-day culture during 4–40°C at 50 µmol photons m-2 s-1 remained stable between 16°C and 32°C but decreased outside of this range. The combined effect of irradiance (200 [low] and 1000 [high] µmol photons m-2 s-1) and temperature (28, 22, and 16°C) revealed that ΔF/Fm' declined during exposure to high irradiance at all temperature treatments. However, it mostly recovered after a subsequent 12-hour period of dim-light acclimation at 28°C and 22°C. In contrast, those at 16°C could not recover, indicating the occurrence of low-temperature light stress. This alga appears to be well-adapted to the irradiance and temperature environment at the study site. However, the winter temperature appears to approach its threshold level, and the occurrence of strong light during the winter might adversely affect the abundance of this alga near its northern distributional limit.

Funder

Japan Society for the Promotion of Science

Kagoshima University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3