Assessment of microalgae species, biomass, and distribution from spectral images using a convolution neural network

Author:

Salmi PauliinaORCID,Calderini MarcoORCID,Pääkkönen SalliORCID,Taipale SamiORCID,Pölönen IlkkaORCID

Abstract

AbstractEffective monitoring of microalgae growth is crucial for environmental observation, while the applications of this monitoring could also be expanded to commercial and research-focused microalgae cultivation. Currently, the distinctive optical properties of different microalgae groups are targeted for monitoring. Since different microalgae can grow together, their spectral signals are mixed with ambient properties, making estimations of species biomasses a challenging task. In this study, we cultured five different microalgae and monitored their growth with a mobile spectral imager in three separate experiments. We trained and validated a one-dimensional convolution neural network by introducing absorbance spectra of the cultured microalgae and simulated pairwise mixtures of them. We then tested the model with samples of microalgae (monocultures and their pairwise mixtures) that were not part of the training or validation data. The convolution neural network classified microalgae accurately in the monocultures (test accuracy = 95%, SD = 4) and in the pairwise mixtures (test accuracy = 100%, SD = 0). Median prediction errors for biomasses were 17% (mean = 22%, SD = 18) for the monocultures and 17% (mean 24%, SD = 28) for the pairwise mixtures. As the spectral camera produced spatial information of the imaged target, we also demonstrated here the spatial distribution of microalgae biomass by applying the model across 5 × 5 pixel areas of the spectral images. The results of this study encourage the application of a one-dimensional convolution neural network to solve classification, regression, and distribution problems related to microalgae observation, simultaneously.

Funder

Academy of Finland

University of Jyväskylä

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Aquatic Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3