A co-cultivation process of Nannochloropsis oculata and Tisochrysis lutea induces morpho-physiological and biochemical variations potentially useful for biotechnological purposes

Author:

Maglie MicheleORCID,Baldisserotto CostanzaORCID,Guerrini AlessandraORCID,Sabia AlessandraORCID,Ferroni LorenzoORCID,Pancaldi SimonettaORCID

Abstract

AbstractThe biotechnological potential of microalgae has gained considerable importance in many applied fields: biomass production for food and feed, cosmeceutical and pharmaceutical products, energy and phytoremediation. The driving force that inspires the progress in microalgae production is the need for new cultivation systems to obtain simultaneously the maximum yield, reduction of water and nutrients use, and production of economically interesting molecules, such as pigments, fatty acids and polysaccharides. We aim to test, for the first time, the co-cultivation in saline medium of Tisochrysis lutea (Haptophyta) and Nannochloropsis oculata (Ochrophyta) to obtain valuable compounds, i.e. pigments and lipids characteristic of each species, using a single culture process. Mono-cultures of each strain were used as controls. The two strains showed an increase in the concentration of chlorophylls and carotenoids in co-culture. At the end of the experiment, the fatty acid profile was analysed by gas chromatography–mass spectrometry. The lipids in the co-cultivated cell extracts were mainly attributable to N. oculata, which represented 97% of the total cells (ca. 83% of the total biomass) at the end of the experiment. Nevertheless, the ω-3 characteristic of T. lutea (DHA and SDA, absent in N. oculata) was also detectable. Although the co-cultivation of these two phylogenetically different species of microalgae did not show positive effects on the growth and on the total lipid production, however, this process resulted in a reduction of the production costs and a lower consumption of water and nutrients.

Funder

Università degli Studi di Ferrara

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3