Successful growth of coastal marine microalgae in wastewater from a salmon recirculating aquaculture system

Author:

Borg-Stoveland StianORCID,Draganovic Vukasin,Spilling Kristian,Gabrielsen Tove M.

Abstract

AbstractAs global demand for seafood increases, recirculating aquaculture systems (RAS) have gained prominence for sustainable fish rearing. The sustainability of RAS still requires improvement, particularly managing the fish waste. Here we investigated the growth and nutrient removal capabilities of three microalgal species (Isocrysis galbana, Phaeodactylum tricornutum and Skeletonema marinoi) in aquaculture wastewater (AWW) mixed at different concentrations with cultivation medium. All three microalgae showed growth in different concentrations of the AWW obtained from an Atlantic salmon RAS facility in Agder, Norway. The average growth rates for I. galbana, S. marinoi and P. tricornutum at 75% AWW concentration were 0.31± 0.00 day-1, 0.34 ± 0.00 day-1, 0.25 ± 0.02 day-1, respectively. All three species effectively contributed to nitrate, ammonium and phosphate removal. When cultivated in 75% AWW, the microalgae achieved nearly complete removal of nitrite, nitrate, and phosphate, while approximately 90% of ammonium was also removed. Our results confirm the viability of AWW for microalgal cultivation on a laboratory scale suggesting this presents a sustainable route to further develop a circular bioeconomy in aquaculture.

Funder

The Research Council of Norway

Ecofishcircle AS

University of Agder

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3