Obtaining spores for the production of Saccharina latissima: seasonal limitations in nature, and induction of sporogenesis in darkness

Author:

Boderskov TeisORCID,Rasmussen Michael Bo,Bruhn Annette

Abstract

AbstractWhen cultivating the kelp Saccharina latissima, knowledge on the availability of seeding material for the production is essential. Applying a spore seeding approach requires spores from the reproductive organs of the fertile sporophytes (sori). As sori are generally not present during the time of seeding in late summer, the production of spores (sporogenesis) can be artificially induced by removing the meristematic part of the sporophyte and keeping the sporophyte under short day, temperate, and nutrient-replete conditions. Only limited information is available on the effect of light intensities including darkness on the sporogenesis of S. latissima. This study examined the natural pattern of sporogenesis in S. latissima from Middelfart, Denmark, and the effect of four different light regimes (0, 20, 60, or 120 μmol photons m−2 s−1) on the artificial induction of sporogenesis in S. latissima. Natural reproductivity and availability of spores in Denmark peaked in early winter, with 86% of the population being reproductive in November. Reproductive material was available from October until late spring, but with a variable spore release from 11 × 103 to 1.2 × 106 spores cm−2 sori. The artificial induction of sporogenesis was optimal in darkness with > 90% of sporophytes developing sori after 49 days, with an average spore release density of 1.15 ± 0.38 × 106 spores cm−2 sori. The results confirmed that S. latissima in Denmark follows the general pattern of reproduction of S. latissima in North Atlantic regions and demonstrated for the first time that sporogenesis in S. latissima can be efficiently induced in darkness.

Funder

Innovationsfonden

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3