Mechanism of lactose assimilation in microalgae for the bioremediation of dairy processing side-streams and co-production of valuable food products

Author:

Li Yuchen,Miros Svitlana,Kiani Hossein,Eckhardt Hans-Georg,Blanco Alfonso,Mulcahy Shane,McDonnell Hugh,Tiwari Brijesh Kumar,Halim Ronald

Abstract

Abstract This study investigated the mechanism of lactose assimilation in Nannochloropsis oceanica for dairy-wastewater bioremediation and co-production of valuable feed/food ingredients in a circular dairy system (β-galactosidase and omega-3 polyunsaturated fatty acids). Mixotrophic cultivation was found to be mandatory for lactose assimilation in N. oceanica, with biomass production in mixotrophic cultures reaching a fourfold increase over that under heterotrophic conditions. Under mixotrophic conditions, the microalgae were able to produce β-galactosidase enzyme to hydrolyse lactose, with maximum extracellular secretion recorded on day 8 of growth cycle at 41.47 ± 0.33 U gbiomass−1. No increase in the concentration of glucose or galactose was observed in the medium, confirming the ability of microalgae to indiscriminately absorb the resultant monosaccharides derived from lactose breakdown. Population analysis revealed that microalgae cells were able to maintain dominance in the mixotrophic culture, with bacteria accounting for < 12% of biomass. On the other hand, under heterotrophic conditions, native bacteria took over the culture (occupying over 95% of total biomass). The bacteria, however, were also unable to effectively assimilate lactose, resulting in limited biomass increase and negligible production of extracellular β-galactosidase. Results from the study indicate that N. oceanica can be effectively applied for onsite dairy wastewater treatment under strict mixotrophic conditions. This is commercially disadvantageous as it rules out the possibility of deploying heterotrophic fermentation with low-cost bioreactors and smaller areal footprint.

Funder

China Scholarship Council

Irish Research Council

Enterprise Ireland

University College Dublin

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3