Improving estimation of phytoplankton abundance and distribution in ballast water discharges

Author:

Casas-Monroy OscarORCID,Rajakaruna Harshana,Bailey Sarah A.

Abstract

AbstractWith the International Maritime Organization’s (IMO) International Convention for the Control and Management of Ships’ Ballast Water and Sediments now in force, determining abundance and distribution of phytoplankton inside ballast tanks is critical for successful ballast water management, particularly when assessing compliance. The relationship between the abundance and distribution of cells was examined to obtain the best representative sample of the entire phytoplankton community in ballast tanks, comparing three ballast water sampling techniques including in-line, in-tank, and Van Dorn bottle methods. Lloyd’s index, Dy, and Gini index were applied to compare methods of sample collection and determine representativeness of samples and performance of sampling methods. Phytoplankton abundance trends from live microscopy counts using fluorescein diacetate (FDA) were also compared to those using a FlowCAM on preserved samples. The phytoplankton community showed a patchy distribution inside the ballast tank and this trend was observed across all voyages. The estimated marginal mean analysis showed that in hypothetical conditions (e.g., 702 m3 of water in ballast tank and phytoplankton whole-tank abundance of 19,522 cells), the difference among the three methods was small. Conversely, statistical analysis performed on empiric abundances using a negative binomial regression model determined that the volume discharged during sampling of ballast water has an effect on the number of cells collected on a given voyage. Results of this study also confirmed that the in-line method may be a better method at collecting phytoplankton samples from ballast tanks than the in-tank or Van Dorn method, regardless of the time at which samples are collected. Finally, the number of living cells and the number of preserved cells showed similar trends for most of the voyages, despite fewer samples analyzed using FDA.

Funder

Transport Canada

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3