Abstract
AbstractExperimental cultures of both microalgae and macroalgae are commonly carried out by phycologists or environmental biologists to look into morphological, physiological, and molecular responses to aquatic environmental changes. However, the species of inorganic carbon in algae cultures is often altered by algal photosynthetic CO2 removal and/or bicarbonate utilization. The pH changes associated with altered carbonate chemistry in cultures impact physiological processes in microalgae and macroalgae even at their exponential growth phases, since extra energy is required to sustain intracellular acid–base homeostasis. Usually, pH increases during light period due to inorganic carbon uptake and utilization for photosynthesis and decreases during dark period because of respiratory CO2 release. Therefore, to obtain relevant data aimed for physiological and/or molecular responses of algae to changed levels of environmental factors, stability of pH/pCO2 in the cultures should be considered and controlled to rule out impacts of carbonate chemistry and pH changes. In this work, principles involved in changing pH processes in algal cultures are mechanistically analyzed and several approaches to control pH and pCO2 are introduced. In order to sustain stability of pH/pCO2, the principles underline the following key points: (1) maintaining the rate of photosynthetic C removal less than or equal to the rate of CO2 dissolution into the cultures which are aerated; or (2) sustaining dilute cultures with very low cell density without aeration, so that photosynthetic C removal is small enough not to cause significant pH/pCO2 changes; or (3) stabilizing the changes in micro-environments surrounding the cells or thallus. To maintain pH drift < 1% in growing typical unicellular microalgae, the recommended cell concentration ranges from 50 × 103 to 200 × 103 mL−1 with aeration (air replacement rate of ca 500–1000 mL L−1 min−1) in semi-continuous cultures of < 1 L, and it ranges from 100 to 5000 cells mL−1 for diatoms and from 100 to 100 × 103 cells mL−1 for coccolithophores in dilute cultures without aeration, respectively. For macroalgae, maintaining the thalli in flowing through- system or in semi-continuous cultures (continuously control algal biomass density) is recommended.
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Aquatic Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献