Approaches and involved principles to control pH/pCO2 stability in algal cultures

Author:

Gao KunshanORCID

Abstract

AbstractExperimental cultures of both microalgae and macroalgae are commonly carried out by phycologists or environmental biologists to look into morphological, physiological, and molecular responses to aquatic environmental changes. However, the species of inorganic carbon in algae cultures is often altered by algal photosynthetic CO2 removal and/or bicarbonate utilization. The pH changes associated with altered carbonate chemistry in cultures impact physiological processes in microalgae and macroalgae even at their exponential growth phases, since extra energy is required to sustain intracellular acid–base homeostasis. Usually, pH increases during light period due to inorganic carbon uptake and utilization for photosynthesis and decreases during dark period because of respiratory CO2 release. Therefore, to obtain relevant data aimed for physiological and/or molecular responses of algae to changed levels of environmental factors, stability of pH/pCO2 in the cultures should be considered and controlled to rule out impacts of carbonate chemistry and pH changes. In this work, principles involved in changing pH processes in algal cultures are mechanistically analyzed and several approaches to control pH and pCO2 are introduced. In order to sustain stability of pH/pCO2, the principles underline the following key points: (1) maintaining the rate of photosynthetic C removal less than or equal to the rate of CO2 dissolution into the cultures which are aerated; or (2) sustaining dilute cultures with very low cell density without aeration, so that photosynthetic C removal is small enough not to cause significant pH/pCO2 changes; or (3) stabilizing the changes in micro-environments surrounding the cells or thallus. To maintain pH drift < 1% in growing typical unicellular microalgae, the recommended cell concentration ranges from 50 × 103 to 200 × 103 mL−1 with aeration (air replacement rate of ca 500–1000 mL L−1 min−1) in semi-continuous cultures of < 1 L, and it ranges from 100 to 5000 cells mL−1 for diatoms and from 100 to 100 × 103 cells mL−1 for coccolithophores in dilute cultures without aeration, respectively. For macroalgae, maintaining the thalli in flowing through- system or in semi-continuous cultures (continuously control algal biomass density) is recommended.

Funder

nsfc

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3