Hyposalinity induces significant polar lipid remodeling in the marine microalga Dunaliella tertiolecta (Chlorophyceae)

Author:

Vrana IvnaORCID,Bakija Alempijević SarandaORCID,Novosel NivesORCID,Ivošević DeNardis NadicaORCID,Žigon DušanORCID,Ogrinc NivesORCID,Gašparović BlaženkaORCID

Abstract

AbstractMarine microalgae often live in a fluctuating environment including a decrease in salinity caused by global warming induced sea ice melting and freshwater inflows. Under conditions of fluctuating salinity, microalgae have evolved a variety of survival mechanisms such as lipid accumulation and remodeling. The purpose of this study was to investigated the membrane lipid remodeling of the marine green microalgaDunaliella tertiolectaas a short-term acclimation mechanism in response to hyposalinity (20 and 3 PSU) with respect to growth at optimal salinity (38 PSU). We identified 34 lipid species belonging to seven polar lipid classes.Dunaliella tertiolectaaccumulates cell lipids and remodels polar lipid classes and their fatty acids composition as response to hypoosmotic stress at 3 PSU. We found that the unsaturation of most polar lipids decreases overall, indicating decreased membrane fluidity and altered permeability, whereas shortening the length of fatty acids of polar lipids is not one of the strategies ofD. tertiolectato cope with the decrease in salinity. Increase in relative content (%) and unsaturation of monogalactosyldiacylglycerols (MGDG) and decrease in relative content (%) and unsaturation of phosphatidylglycerols (PG), suggesting changes in photosynthetic membranes of thylakoids at 20 and 3 PSU. At a very low salinity of 3 PSU, the relative content (%) of phosphatidylinositols (PI) increases, suggesting increased lipid trafficking and signaling in the cells. These changes are statistically significant and we hypothesize thatD. tertiolectais genetically adapted to withstand large salinity fluctuations through polar lipid composition.

Funder

Hrvatska Zaklada za Znanost

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3