Abstract
AbstractMicroalgae and cyanobacteria are effective platforms for environmental remediation (phycoremediation), particularly of air and water. There is limited scope to deploy suspension cultures due to space, cost and maintenance challenges—driving an imperative towards biofilm-based treatment systems; however, these systems are ill-equipped for rapid and mobile deployment. In this study we explored the main technical challenges to developing cheap, accessible and low-maintenance engineered biofilm systems (biocomposites) comprising cyanobacteria (Synechococcus elongatus) immobilised to a range of textiles (n = 4) by natural or synthetic latex binders (n = 16), chitosan or shellac. Biocomposite viability (measured as net CO2 uptake) was assessed over 20 days in semi-batch trials. No maintenance was required during this period as the humidity within the reactor was sufficient to support metabolism. Two commercial natural latex binders (AURO 320 and 321) supported strong growth within the biocomposite, outperforming suspension controls. There was variation in textiles performance, with an 80/20 polyester-cotton blend performing most consistently. Biocomposite formulation was varied in terms of binder solids content and cell loading rate, with 5% solids and 2.5% cell loading the most effective combination. We demonstrate the technical feasibility of fabricating functional textile-based cyanobacteria biocomposites and discuss this within the context of developing decentralised wastewater treatment services.
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Aquatic Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献