Abstract
AbstractIn recent years microalgae products have developed increasing market demand, but sustainable industrial production is still challenged by biological stability of large-scale production plants. Yet the relationships between algal hosts, associated microbiomes, and contaminants in photobioreactors remains widely understudied. The aim of this study was to investigate the temporal development of microbiomes of four freshwater microalgae species Scenedesmus vacuolatus, Desmodesmus quadricauda, Chlorella sorokiniana, and Botryococcus braunii, in presence and absence of the zoosporic parasite Amoeboaphelidium protococcarum. To compare the effects of sterile and nonsterile culture conditions, infection experiments were performed in sterile laboratory (sterile) and simulated industrial conditions (open). Algal growth (dry weight, optical density, and nutrient consumption) was observed for 21 days, and samples of the associated microbiome were collected for bacterial 16S rRNA gene Illumina MiSeq sequencing. Infection patterns of A. protococcarum were algae species-specific, irrespectively of culture conditions. Bacterial community analysis demonstrated distinct and stable bacterial communities for each algae species, which were mostly dominated by α- and γ-Proteobacteria. Upon aphelid parasitosis, bacterial diversity increased, and community compositions diverged algae-specific over time. Moreover, bacterial functional traits shifted to detoxification, degradation, and cellulolysis once algae were infected. This study provides a first insight into the close connection between algae, associated bacterial microbiomes and appearing contaminants in photobioreactor systems.
Funder
Hochschule für angewandte Wissenschaften Coburg
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Aquatic Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献