Effect of seeding methods and hatchery periods on sea cultivation of Saccharina latissima (Phaeophyceae): a Norwegian case study

Author:

Forbord SiljeORCID,Steinhovden Kristine B.,Solvang Torfinn,Handå Aleksander,Skjermo Jorunn

Abstract

Abstract To reach the goal of an industrialised macroalgae industry in Norway and other high-cost countries in the near future, a standardised seedling production method to improve quality control and predictability of cultivated biomass is essential. A total of 11 different treatments for seeding twine or rope with meiospores, gametophytes or juvenile sporophytes from the kelp Saccharina latissima were measured for growth (frond length, frond area, biomass yield and density) and protein content after 80 and 120 days at sea. Meiospore- and gametophyte-seeded twines were pre-cultivated in the hatchery for 14–42 days prior to deployment, while juvenile sporophytes of different ages were seeded on ropes directly on the day of deployment using a commercial binder to attach the seedlings. The results showed that seeding with meiospores pre-cultivated in the hatchery for 42 days (S42) before deployment gave significantly longer fronds (77.0 ± 6.7 cm) and a higher biomass yield (7.2 ± 0.1 kg m−1) at sea compared to other treatments. The poorest growth was measured for the direct-seeded sporophytes pre-cultivated in free-floating cultures for 35 days prior to deployment (D35; 34.4 ± 2.4 cm frond length and 1.6 ± 0.4 kg m−1). Image analysis was used to measure the coverage of the twine substrate before deployment, and a correlation was found between substrate coverage and frond length at sea, indicating that this can be used as a tool for quantity and quality control during the hatchery phase and before deployment. The protein content did not reveal any large differences between the treatments after 120 days of cultivation.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Aquatic Science

Reference56 articles.

1. Alver MO, Solvang T, Kvæstad B (2018) Proof of concept on seeding system. SINTEF Ocean report 2018:00785 A,. SINTEF Ocean, Trondheim

2. Arbona J, Molla M (2006) Cultivation of brown seaweed Alaria esculenta. Aquaculture explained, vol 21. Bord lascaigh Mhara, Dublin

3. Bak UG (2019) Seaweed cultivation in the Faroe Island - an investigation of the biochemical composition of selected macroalgal species, optimised seeding techniques, and open-ocean cultivation methods from a commercial perspective. Industrial PhD Thesis, Technical University of Denmark, Lyngby

4. Bak UG, Mols-Mortensen A, Gregersen O (2018) Production method and cost of commercial-scale offshore cultivation of kelp in the Faroe Islands using multiple partial harvesting. Algal Res 33:36–47

5. Broch OJ, Ellingsen IH, Forbord S, Wang X, Volent Z, Alver MO, Handa A, Andresen K, Slagstad D, Reitan KI, Olsen Y, Skjermo J (2013) Modelling the cultivation and bioremediation potential of the kelp Saccharina latissima in close proximity to an exposed salmon farm in Norway. Aquacult Env Interact 4:187–206

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3