A qPCR method for distinguishing biomass from non-axenic terrestrial cyanobacteria cultures in hetero- or mixotrophic cultivations

Author:

Walther JakobORCID,Schwarz AnnaORCID,Witthohn MarcoORCID,Strieth DorinaORCID,Muffler KaiORCID,Ulber RolandORCID

Abstract

AbstractThe cultivation of cyanobacteria with the addition of an organic carbon source (meaning as heterotrophic or mixotrophic cultivation) is a promising technique to increase their slow growth rate. However, most cyanobacteria cultures are infected by non-separable heterotrophic bacteria. While their contribution to the biomass is rather insignificant in a phototrophic cultivation, problems may arise in heterotrophic and mixotrophic mode. Heterotrophic bacteria can potentially utilize carbohydrates quickly, thus preventing any benefit for the cyanobacteria. In order to estimate the advantage of the supplementation of a carbon source, it is essential to quantify the proportion of cyanobacteria and heterotrophic bacteria in the resulting biomass. In this work, the use of quantitative polymerase chain reaction (qPCR) is proposed. To prepare the samples, a DNA extraction method for cyanobacteria was improved to provide reproducible and robust results for the group of terrestrial cyanobacteria. Two pairs of primers were used, which bind either to the 16S rRNA gene of all cyanobacteria or all bacteria including cyanobacteria. This allows a determination of the proportion of cyanobacteria in the biomass. The method was established with the two terrestrial cyanobacteria Trichocoleus sociatus SAG 26.92 and Nostoc muscorum SAG B-1453-12a. As proof of concept, a heterotrophic cultivation with T. sociatus with glucose was performed. After 2 days of cultivation, a reduction of the biomass partition of the cyanobacterium to 90% was detected. Afterwards, the proportion increased again.

Funder

Deutsche Forschungsgemeinschaft

Ministeriums für Wissenschaft, Weiterbildung und Kultur

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Aquatic Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3