Cultivation of Gongolaria barbata (Fucales, Phaeophyceae) with a seaweed-derived biostimulant in order to improve photophysiological fitness and promote fertility to advance the restoration of marine macroalgal forests

Author:

Kaleb SaraORCID,Sánchez de Pedro RaquelORCID,Bañares-España ElenaORCID,Alboresi AlessandroORCID,Savonitto GildaORCID,Natale SaraORCID,Bevilacqua StanislaoORCID,Falace AnnalisaORCID

Abstract

AbstractAs a result of several anthropogenic factors, Cystoseira sensu lato forests have declined or become regionally extinct in many coastal regions of the Mediterranean. Given the low natural recovery of lost populations, research efforts have been encouraged to develop sustainable and efficient restoration of macroalgal forests on a large scale. By promoting growth and fertility of collected thallus branches under controlled laboratory conditions, the availability of seedlings for restoration could be ensured without jeopardizing natural populations. Here we investigated the effect of a commercial algal biostimulant (AlgatronCifo®) on the photophysiology, growth and fertility of Gongolaria barbata (Stackhouse) Kuntze (Fucales, Phaeophyceae). In a factorial laboratory experiment, two different temperatures (10 ºC and 14 °C) and two culture media [i.e. seawater (SW) and Algatron (AT)] were tested. The photosynthetic performance of G. barbata doubled after three weeks of culture with AT, while it decreased by 25% when cultivated in SW. The highest photosynthetic performance and growth were achieved at 14ºC with AT, where fertile receptacles also developed, followed by seedling settlements. The thalli cultured in AT had similar or better photosynthetic performance than the initial control thalli. AT-cultured thalli had a greater ability to quench energy via photochemical pathways (qP) than those from the SW, which on the contrary, had higher levels of non-photochemical responses (qN, NPQmax). This limited photosynthetic performance was probably linked to the higher P-limitation experienced under that treatment. The algal biostimulant enhanced the physiological performance and induced fertility of G. barbata, demonstrating its valorization potential and setting a new path for improved restoration applications.

Funder

European Commission

Università degli Studi di Trieste

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Aquatic Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3