Developing food waste biorefinery: using optimized inclined thin layer pond to overcome constraints of microalgal biomass production on food waste digestate

Author:

Chuka-ogwude David,Mickan Bede S.,Ogbonna James C.,Moheimani Navid R.

Abstract

AbstractDiversion of food waste from landfill through anaerobic digestion is a sustainable form of energy production (biogas) and the waste effluent (digestate) can be utilised as nutrient supply for microalgae cultivation. However, digestate has very high nutrient concentrations and is highly turbid, making it difficult to utilize as a nutrient source with conventional microalgae cultivation systems. Here we compared the efficiencies of a conventional open raceway pond (ORWP) and an improved inclined thin layer photobioreactor (ITLP) for the utilization and treatment of food waste derived digestate by Chlorella sp. The ITLP improved on volumetric and areal productivities by 17 and 3 times over the ORWP, with values of 0.563 and 31.916 g m −2 day −1 respectively. Areal nutrient removal via microalgae biomass were 2359.759 ± 64.75 and 260.815 ± 7.16 mg m −2 day −1 for nitrogen and phosphorous respectively in the ITLP, which are 2.8 times higher than obtained in the ORWP. The ITLP’s superiority stems from its ability to support a much higher average biomass yield of 6.807 g L −1, which was 7 times higher than in the ORWP. Mean irradiance in-situ was higher in the ITLP, irradiance distribution and utilization by the culture in the ITLP was 44% more efficient than in the ORWP. Our results indicate that the ITLP is a far more productive system than conventional raceway ponds. This demonstrates that integration of ITLP microalgae cultivation using digestate has the potential to make digestate management yield net benefit in food waste biorefinery settings.

Funder

Murdoch University

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Aquatic Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3