Abstract
AbstractThe paper contains a study of weighted exponential inequalities for differentially subordinate martingales, under the assumption that the underlying weight satisfies Muckenhoupt’s condition $$A_{\infty }$$
A
∞
. The proof exploits certain functions enjoying appropriate size conditions and concavity. The martingales are adapted, uniformly integrable, and càdlàg - we do not assume any path-continuity restrictions. Because of this generality, we need to handle jump parts of processes which forces us to construct a Bellman function satisfying a stronger condition than local concavity. As a corollary, we will establish some new weighted $$L^p$$
L
p
estimates for differential subordinates of bounded martingales.
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. Bañuelos, R., Osękowski, A.: Weighted square function estimates. Bull. Sci. Math., to appear
2. Bañuelos, R., Osękowski, A.: Sharp weighted $$L^2$$ inequalities for square functions. Trans. Amer. Math. Soc. 370, 2391–2422 (2018)
3. Bañuelos, R., Osękowski, A.: A weighted maximal inequality for differentially subordinate martingales. Proc. Amer. Math. Soc. 146, 2277–2281 (2018)
4. Bonami, A., Lepingle, D.: Fonction maximale et variation quadratique des martingales en presence d’un poids. In: Séminaire de Probabilités XIII (Univ Strasbourg, Strasbourg 1977/78), pp. 294–306. Lecture Notes in Math., 721. Springer, Berlin (1979)
5. Brzozowski, M., Osękowski, A.: Weighted maximal inequalities for martingale transforms. Probab. Math. Statist., to appear