Abstract
AbstractA final-state observability result in the Banach space setting for non-autonomous observation problems is obtained that covers and extends all previously known results in this context, while providing a streamlined proof that follows the established Lebeau-Robbiano strategy.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Reference15 articles.
1. Beauchard, K., Egidi, M., Pravda-Starov, K.: Geometric conditions for the null-controllability of hypoelliptic quadratic parabolic equations with moving control supports. C. R. Math. Acad. Sci. Paris 358, 651–700 (2020)
2. Beauchard, K., Pravda-Starov, K.: Null-controllability of hypoelliptic quadratic differential equations. J. Éc. Polytech. Math. 5, 1–43 (2018)
3. Bombach, C., Gallaun, D., Seifert, C., Tautenhahn, M.: Observability and null-controllability for parabolic equations in $$L_p$$-spaces. Math. Control Relat. Fields 13, 1484–1499 (2023)
4. Bombach, C., Gabel, F., Seifert, C., Tautenhahn, M.: Observability for non-autonomous systems. SIAM J. Control Optim. 61, 315–341 (2023)
5. Egidi, M., Nakić, I., Seelmann, A., Täufer, M., Tautenhahn, M., Veselić, I.: Null-controllability and control cost estimates for the heat equation on unbounded and large bounded domains. In: Control Theory of Infinite-Dimensional Systems, pp. 117–157. Oper. Theory Adv. Appl., 277. Linear Oper. Linear Syst. Birkhäuser/Springer, Cham (2020)