Author:
Klopsch Benjamin,Kuckuck Benno
Publisher
Springer Science and Business Media LLC
Reference7 articles.
1. O. Bogopolski, A surface groups analogue of a theorem of Magnus, in: Geometric methods in group theory, 59–69, Contemp. Math., 372, Amer. Math. Soc., Providence, RI, 2005.
2. O. Bogopolski and K. Sviridov, A Magnus theorem for some one-relator groups, in: The Zieschang Gedenkschrift, 63–73, Geom. Topol. Monogr., 14, Geom. Topol. Publ., Coventry, 2008.
3. C. W. Curtis and I. Reiner, Methods of representation theory, Vol. I, With applications to finite groups and orders, John Wiley & Sons, Inc., New York, 1981.
4. C. Feldkamp, Magnus property for the fundamental group of a closed nonorientable surface of genus 3, (preprint).
5. Gupta N., Sidki S.: On torsion-free metabelian groups with commutator quotients of prime exponent. Internat. J. Algebra Comput. 9, 493–520 (1999)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On finite groups with the Magnus Property;Bulletin of the London Mathematical Society;2024-07-09
2. Free polynilpotent groups and the Magnus property;Forum Mathematicum;2023-01-30