Abstract
AbstractIn this paper, we study the ideals of finite elements in special vector lattices of real sequences, first in the duals of Cesàro sequence spaces $${\text {ces}}_p$$
ces
p
for $$p\in \{0\}\cup [1,\infty )$$
p
∈
{
0
}
∪
[
1
,
∞
)
and, second, after the Cesàro sum $${\text {ces}}_{p}{(\mathfrak {X})}$$
ces
p
(
X
)
of a sequence of Banach spaces is introduced, where $$p=\infty $$
p
=
∞
is also allowed, we characterize their duals and the finite elements in these sums if the summed up spaces are Banach lattices. This is done by means of a remarkable extension of the corresponding result for direct sums.
Funder
Technische Universität Dresden
Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. Programma van de jaarlijkse prijsvragen. Nieuw Arch. Wisk. (1) 3, 70–76 (1971)
2. Abramovich, Y.A., Aliprantis, C.D.: An Invitation to Operator Theory. American Mathematical Society, Providence (2002)
3. Alexiewicz, A.: On Cauchy’s condensation theorem. Studia Math. 16, 80–85 (1957)
4. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis, 3rd edn. Springer, Berlin (2006)
5. Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht (2006)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献