Funder
National Natural Science Foundation of China
Innovative Research Group Project of the National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Ariño, M.A., Muckenhoupt, B.: Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions. Trans. Amer. Math. Soc. 320, 727–735 (1990)
2. Bennett, G., Grosse-Erdmann, K.-G.: Weighted Hardy inequalities for decreasing sequences and functions. Math. Ann. 334, 489–531 (2006)
3. Pure and Applied Mathematics;C Bennett,1988
4. Bourgain, J.: On the Hardy-Littlewood maximal function for the cube. Israel J. Math. 203, 275–293 (2014)
5. Bourgain, J., Mirek, M., Stein, E.M., Wróbel, B.: Dimension-free estimates for discrete Hardy-Littlewood averaging operators over the cubes in $${\mathbb{Z} }^d$$. Amer. J. Math. 141(4), 857–905 (2019)