Abstract
AbstractThe aim of this paper is to obtain optimal estimates for the first Robin eigenvalue of the anisotropic p-Laplace operator, namely: $$\begin{aligned} \lambda _F(\beta ,\Omega )= \min _{\psi \in W^{1,p}(\Omega ){\setminus }\{0\} } \frac{\displaystyle \int _\Omega F(\nabla \psi )^p dx +\beta \int _{\partial \Omega }|\psi |^p F(\nu _{\Omega }) d{\mathcal {H}}^{N-1} }{\displaystyle \int _\Omega |\psi |^p dx}, \end{aligned}$$
λ
F
(
β
,
Ω
)
=
min
ψ
∈
W
1
,
p
(
Ω
)
\
{
0
}
∫
Ω
F
(
∇
ψ
)
p
d
x
+
β
∫
∂
Ω
|
ψ
|
p
F
(
ν
Ω
)
d
H
N
-
1
∫
Ω
|
ψ
|
p
d
x
,
where $$p\in ]1,+\infty [,$$
p
∈
]
1
,
+
∞
[
,
$$\Omega $$
Ω
is a bounded, convex domain in $${\mathbb {R}}^{N},$$
R
N
,
$$\nu _{\Omega }$$
ν
Ω
is its Euclidean outward normal, $$\beta $$
β
is a real number, and F is a sufficiently smooth norm on $${\mathbb {R}}^{N}.$$
R
N
.
We show an upper bound for $$\lambda _{F}(\beta ,\Omega )$$
λ
F
(
β
,
Ω
)
in terms of the first eigenvalue of a one-dimensional nonlinear problem, which depends on $$\beta $$
β
and on the volume and the anisotropic perimeter of $$\Omega ,$$
Ω
,
in the spirit of the classical estimates of Pólya (J Indian Math Soc (NS) 24:413–419, 1961) for the Euclidean Dirichlet Laplacian. We will also provide a lower bound for the torsional rigidity $$\begin{aligned} \tau _p(\beta ,\Omega )^{p-1} = \max _{\begin{array}{c} \psi \in W^{1,p}(\Omega ){\setminus }\{0\} \end{array}} \dfrac{\left( \displaystyle \int _\Omega |\psi | \, dx\right) ^p}{\displaystyle \int _\Omega F(\nabla \psi )^p dx+\beta \int _{\partial \Omega }|\psi |^p F(\nu _{\Omega }) d{\mathcal {H}}^{N-1} } \end{aligned}$$
τ
p
(
β
,
Ω
)
p
-
1
=
max
ψ
∈
W
1
,
p
(
Ω
)
\
{
0
}
∫
Ω
|
ψ
|
d
x
p
∫
Ω
F
(
∇
ψ
)
p
d
x
+
β
∫
∂
Ω
|
ψ
|
p
F
(
ν
Ω
)
d
H
N
-
1
when $$\beta >0.$$
β
>
0
.
The obtained results are new also in the case of the classical Euclidean Laplacian.
Funder
Università degli Studi di Napoli Federico II
Publisher
Springer Science and Business Media LLC
Reference13 articles.
1. Amar, M., Bellettini, G.: A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. H. Poincaré C Anal. Non Linéaire 11(1), 91–133 (1994)
2. Barbato, R., Della Pietra, F.: Upper and lower bounds for the first Robin eigenvalue of nonlinear elliptic operators. In preparation
3. Becker, M., Stark, E.L.: On a hierarchy of quolynomial inequalities for $${ \tan }\, x$$. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 1978(602–633), 133–138 (1979)
4. Della Pietra, F., Gavitone, N.: Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators. Math. Nachr. 287(2–3), 194–209 (2014)
5. Della Pietra, F., Piscitelli, G.: Sharp estimates for the first Robin eigenvalue of nonlinear elliptic operators. J. Differential Equations 386, 269–293 (2024)