Abstract
AbstractWe show that unary log-analytic functions are polynomially bounded. In the higher dimensional case, globally a log-analytic function can have exponential growth. We show that a log-analytic function is polynomially bounded on a definable set which contains the germ of every ray at infinity.
Publisher
Springer Science and Business Media LLC
Reference6 articles.
1. Kaiser, T., Opris, A.: Differentiability properties of log-analytic functions. Rocky Mountain J. Math. 52(4), 1423–1443 (2022)
2. Kurdyka, K., Raby, G.: Densité des ensembles sous-analytiques. Ann. Inst. Fourier 39(3), 753–771 (1989)
3. Lion, J.-M., Rolin, J.-P.: Théorème de préparation pour les fonctions logarithmico-exponentielles. Ann. Inst. Fourier 47(3), 859–884 (1997)
4. Lion, J.-M., Speissegger, P.: A geometric proof of the definability of Hausdorff limits. Sel. Math. New Ser. 10(3), 377–390 (2004)
5. van den Dries, L.: Tame Topology and O-minimal Structures. London Math. Soc. Lecture Notes Series, vol. 248. Cambridge University Press, Cambridge (1998)