Abstract
AbstractWe show that two-dimensional conformally related Douglas metrics are Randers.
Funder
Friedrich-Schiller-Universität Jena
Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. Antonelli, P.L., Ingarden, R.S., Matsumoto, M.: The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology. Kluwer Academic Publishers, Boston (1993)
2. Bácsó, S., Matsumoto, M.: On Finsler spaces of Douglas type. A generalization of the notion of Berwald space. Publ. Math. Debrecen 51, 385–406 (1997)
3. Bácsó, S., Cheng, X.: Finsler conformal transformations and the curvature invariants. Publ. Math. Debrecen 70(1–2), 221–231 (2007)
4. Chen, G., Cheng, X., Zou, Y.: On conformal transformations between two $$(\alpha, \beta )$$ metrics. Diff. Geom. Appl. 31, 300–307 (2013)
5. Cheng, J.-H., Marugame, T., Matveev, V., Montgomery, R.: Chains in CR geometry as geodesics of a Kropina metric. Adv. Math. 350, 973–999 (2019)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献