Quaternion lattices and quaternion fields

Author:

Schmid PeterORCID

Abstract

AbstractLet $$Q_8$$ Q 8 be the quaternion group of order 8 and $${\chi }$$ χ its faithful irreducible character. Then $${\chi }$$ χ can be realized over certain imaginary quadratic number fields $$K={\mathbb Q}\bigl (\sqrt{-N}\bigr )$$ K = Q ( - N ) but not over their rings of integers (Feit, Serre); here N is a positive square-free integer. We show that this happens precisely when $${\mathbb Q}\bigl (\sqrt{N}\bigr )$$ Q ( N ) but not $${\mathbb Q}\bigl (\sqrt{2}, \sqrt{N}\bigr )$$ Q ( 2 , N ) can be embedded into a $$Q_8$$ Q 8 -field over the rationals (Galois with group $$Q_8$$ Q 8 ) and N is not a sum of two integer squares. In particular, we get that $${\chi }$$ χ cannot be integrally realized if N is (properly) divisible by some prime $$q\equiv 7\,({\textrm{mod}\,}8)$$ q 7 ( mod 8 ) .

Funder

Eberhard Karls Universität Tübingen

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference17 articles.

1. Cliff, G., Ritter, J., Weiss, A.: Group representations and integrality. J. Reine Angew. Math. 426, 192–202 (1992)

2. Curtis, C.W., Reiner, I.: Methods of Representation Theory. Vol. I. With Applications to Finite Groups and Orders. Pure and Applied Mathematics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York (1981)

3. Eichler, M.: Über die Idealklassenzahl total definiter Quaternionenalgebren. Math. Z. 43, 102–109 (1938)

4. Fröhlich, A.: Central Extensions, Galois Groups, and Ideal Class Groups of Number Fields. Contemporary Mathematics, 24. American Mathematical Society. Providence, RI (1983)

5. Gauss, C.F.: Disquisitiones Arithmeticae. Fleischer, Leipzig (1801)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3