Abstract
AbstractIn this paper, we adapt work of Z.-D. Liu to prove a ball covering property for non-branching $${\mathsf {CD}}$$
CD
spaces with non-negative curvature outside a compact set. As a consequence, we obtain uniform bounds on the number of ends of such spaces.
Funder
Consejo Nacional de Ciencia y Tecnología
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Ambrosio, L., Gigli, N.: A user’s guide to optimal transport. In: Piccoli, B., Rascle, M. (eds.) Modelling and Optimisation of Flows on Networks, pp. 1–155. Lecture Notes in Math., 2062. Fond. CIME/CIME Found. Subser. Springer, Heidelberg (2013)
2. Bacher, K., Sturm, K.T.: Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. J. Funct. Anal. 259, 28–56 (2010)
3. Cai, M.: Ends of Riemannian manifolds with nonnegative Ricci curvature outside a compact set. Bull. Amer. Math. Soc. (N.S.) 24, 371–377 (1991)
4. Cavalletti, F., Milman, E.: The globalization theorem for the curvature-dimension condition. Invent. Math. 226, 1–137 (2021)
5. Cavalletti, F., Mondino, A.: Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications. arXiv:2004.08934 (2020)