Abstract
AbstractGiven an uncountable, compact metric space X, we show that there exists no reproducing kernel Hilbert space that contains the space of all continuous functions on X.
Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337–404 (1950)
2. Bach, F.: Breaking the curse of dimensionality with convex neural networks. J. Mach. Learn. Res. 18, 1–53 (2017)
3. Bartolucci, F., De Vito, E., Rosasco, L., Vigogna, S.: Understanding neural networks with reproducing kernel Banach spaces. Appl. Comput. Harmon. Anal. 62, 194–236 (2023)
4. Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer, Boston (2004)
5. Cucker, F., Zhou, D.X.: Learning Theory: An Approximation Theory Viewpoint. Cambridge University Press, Cambridge (2007)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献