Minimal periods for semilinear parabolic equations

Author:

Herzog Gerd,Kunstmann Peer ChristianORCID

Abstract

AbstractWe show that, if $$-A$$ - A generates a bounded holomorphic semigroup in a Banach space X, $$\alpha \in [0,1)$$ α [ 0 , 1 ) , and $$f:D(A)\rightarrow X$$ f : D ( A ) X satisfies $$\Vert f(x)-f(y)\Vert \le L\Vert A^\alpha (x-y)\Vert $$ f ( x ) - f ( y ) L A α ( x - y ) , then a non-constant T-periodic solution of the equation $${\dot{u}}+Au=f(u)$$ u ˙ + A u = f ( u ) satisfies $$LT^{1-\alpha }\ge K_\alpha $$ L T 1 - α K α where $$K_\alpha >0$$ K α > 0 is a constant depending on $$\alpha $$ α and the semigroup. This extends results by Robinson and Vidal-Lopez, which have been shown for self-adjoint operators $$A\ge 0$$ A 0 in a Hilbert space. For the latter case, we obtain - with a conceptually new proof - the optimal constant $$K_\alpha $$ K α , which only depends on $$\alpha $$ α , and we also include the case $$\alpha =1$$ α = 1 . In Hilbert spaces H and for $$\alpha =0$$ α = 0 , we present a similar result with optimal constant where Au in the equation is replaced by a possibly unbounded gradient term $$\nabla _H{\mathscr {E}}(u)$$ H E ( u ) . This is inspired by applications with bounded gradient terms in a paper by Mawhin and Walter.

Funder

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3