Abstract
AbstractWe show that, if $$-A$$
-
A
generates a bounded holomorphic semigroup in a Banach space X, $$\alpha \in [0,1)$$
α
∈
[
0
,
1
)
, and $$f:D(A)\rightarrow X$$
f
:
D
(
A
)
→
X
satisfies $$\Vert f(x)-f(y)\Vert \le L\Vert A^\alpha (x-y)\Vert $$
‖
f
(
x
)
-
f
(
y
)
‖
≤
L
‖
A
α
(
x
-
y
)
‖
, then a non-constant T-periodic solution of the equation $${\dot{u}}+Au=f(u)$$
u
˙
+
A
u
=
f
(
u
)
satisfies $$LT^{1-\alpha }\ge K_\alpha $$
L
T
1
-
α
≥
K
α
where $$K_\alpha >0$$
K
α
>
0
is a constant depending on $$\alpha $$
α
and the semigroup. This extends results by Robinson and Vidal-Lopez, which have been shown for self-adjoint operators $$A\ge 0$$
A
≥
0
in a Hilbert space. For the latter case, we obtain - with a conceptually new proof - the optimal constant $$K_\alpha $$
K
α
, which only depends on $$\alpha $$
α
, and we also include the case $$\alpha =1$$
α
=
1
. In Hilbert spaces H and for $$\alpha =0$$
α
=
0
, we present a similar result with optimal constant where Au in the equation is replaced by a possibly unbounded gradient term $$\nabla _H{\mathscr {E}}(u)$$
∇
H
E
(
u
)
. This is inspired by applications with bounded gradient terms in a paper by Mawhin and Walter.
Funder
Karlsruher Institut für Technologie (KIT)
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Brandt, F., Hieber, M.: Strong periodic solutions to quasilinear parabolic equations: An approach by the Da Prato-Grisvard theorem. Bull. Lond. Math. Soc. 55(4), 1971–1993 (2023)
2. Busenberg, S.N., Fisher, D.C., Martelli, M.: Better bounds for periodic solutions of differential equations in Banach spaces. Proc. Amer. Math. Soc. 98, 376–378 (1986)
3. Chill, R., Fašangová, E.: Gradient Systems. Lecture Notes of the 13th International Internet Seminar. Matfyzpress, Prague (2010)
4. Dacorogna, B., Gangbo, W., Subía, N.: Sur une généralisation de l’inégalité de Wirtinger. Ann. Inst. Henri Poincaré 9(1), 29–50 (1992)
5. Geissert, M., Hieber, M., Nguyen-Matthias, T.H.: A general approach to time periodic incompressible viscous fluid flow problems. Arch. Ration. Mech. Anal. 220(3), 1095–1118 (2016)