A family of equivalent norms for Lebesgue spaces

Author:

Fiorenza Alberto,Jain Pankaj

Abstract

AbstractIf $$\psi :[0,\ell ]\rightarrow [0,\infty [$$ ψ : [ 0 , ] [ 0 , [ is absolutely continuous, nondecreasing, and such that $$\psi (\ell )>\psi (0)$$ ψ ( ) > ψ ( 0 ) , $$\psi (t)>0$$ ψ ( t ) > 0 for $$t>0$$ t > 0 , then for $$f\in L^1(0,\ell )$$ f L 1 ( 0 , ) , we have $$\begin{aligned} \Vert f\Vert _{1,\psi ,(0,\ell )}:=\int \limits _0^\ell \frac{\psi '(t)}{\psi (t)^2}\int \limits _0^tf^*(s)\psi (s)dsdt\approx \int \limits _0^\ell |f(x)|dx=:\Vert f\Vert _{L^1(0,\ell )},\quad (*) \end{aligned}$$ f 1 , ψ , ( 0 , ) : = 0 ψ ( t ) ψ ( t ) 2 0 t f ( s ) ψ ( s ) d s d t 0 | f ( x ) | d x = : f L 1 ( 0 , ) , ( ) where the constant in $$ > rsim $$ depends on $$\psi $$ ψ and $$\ell $$ . Here by $$f^*$$ f we denote the decreasing rearrangement of f. When applied with f replaced by $$|f|^p$$ | f | p , $$1<p<\infty $$ 1 < p < , there exist functions $$\psi $$ ψ so that the inequality $$\Vert |f|^p\Vert _{1,\psi ,(0,\ell )}\le \Vert |f|^p\Vert _{L^1(0,\ell )}$$ | f | p 1 , ψ , ( 0 , ) | f | p L 1 ( 0 , ) is not rougher than the classical one-dimensional integral Hardy inequality over bounded intervals $$(0,\ell )$$ ( 0 , ) . We make an analysis on the validity of $$(*)$$ ( ) under much weaker assumptions on the regularity of $$\psi $$ ψ , and we get a version of Hardy’s inequality which generalizes and/or improves existing results.

Funder

Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference33 articles.

1. Ahmed, I., Fiorenza, A., Formica, M.R., Gogatishvili, A., Rakotoson, J.M.: Some new results related to Lorentz G$$\Gamma $$-spaces and interpolation. J. Math. Anal. Appl. 483, 123623 (2020)

2. Bennett, C., Rudnik, K.: On Lorentz-Zygmund spaces. Dissertationes Math. (Rozrrawy Mat.) 175 (1980)

3. Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics, vol. 129. Academic Press Inc, Boston, MA (1988)

4. Carothers, N.L.: Real Analysis. Cambridge University Press, Cambridge (2000)

5. DiBenedetto, E.: Real Analysis. Birkhäuser Advanced Texts. Birkhäuser, Boston (2002)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modulars from Nakano onwards;Constructive Mathematical Analysis;2021-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3