The TCP transcription factor HvTB2 heterodimerizes with VRS5 and controls spike architecture in barley

Author:

de Souza Moraes Tatiana,van Es Sam W.,Hernández-Pinzón Inmaculada,Kirschner Gwendolyn K.,van der Wal Froukje,da Silveira Sylvia Rodrigues,Busscher-Lange Jacqueline,Angenent Gerco C.,Moscou Matthew,Immink Richard G. H.,van Esse G. WilmaORCID

Abstract

Abstract Key message Understanding the molecular network, including protein-protein interactions, of VRS5 provide new routes towards the identification of other key regulators of plant architecture in barley. Abstract The TCP transcriptional regulator TEOSINTE BRANCHED 1 (TB1) is a key regulator of plant architecture. In barley, an important cereal crop, HvTB1 (also referred to as VULGARE SIX-ROWED spike (VRS) 5), inhibits the outgrowth of side shoots, or tillers, and grains. Despite its key role in barley development, there is limited knowledge on the molecular network that is utilized by VRS5. In this work, we performed protein–protein interaction studies of VRS5. Our analysis shows that VRS5 potentially interacts with a diverse set of proteins, including other class II TCP’s, NF-Y TF, but also chromatin remodelers. Zooming in on the interaction capacity of VRS5 with other TCP TFs shows that VRS5 preferably interacts with other class II TCP TFs in the TB1 clade. Induced mutagenesis through CRISPR–Cas of one of the putative VRS5 interactors, HvTB2 (also referred to as COMPOSITUM 1 and BRANCHED AND INDETERMINATE SPIKELET 1), resulted in plants that have lost their characteristic unbranched spike architecture. More specifically, hvtb2 mutants exhibited branches arising at the main spike, suggesting that HvTB2 acts as inhibitor of branching. Our protein–protein interaction studies of VRS5 resulted in the identification of HvTB2 as putative interactor of VRS5, another key regulator of spike architecture in barley. The study presented here provides a first step to underpin the protein–protein interactome of VRS5 and to identify other, yet unknown, key regulators of barley plant architecture.

Funder

Dutch Research Council

Gatsby Charitable Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Plant Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flowering time genes branching out;Journal of Experimental Botany;2024-03-12

2. Natural variations of HvSRN1 modulate the spike rachis node number in barley;Plant Communications;2024-01

3. Precise Gene Editing of Cereals Using CRISPR/Cas Technology;A Roadmap for Plant Genome Editing;2023-12-15

4. ZmTCP14, a TCP transcription factor, modulates drought stress response in Zea mays L;Environmental and Experimental Botany;2023-04

5. Advances in Research on the Regulation of Floral Development by CYC-like Genes;Current Issues in Molecular Biology;2023-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3