In silico and expression analyses of fasciclin-like arabinogalactan proteins reveal functional conservation during embryo and seed development

Author:

Costa Mário,Pereira Ana Marta,Pinto Sara Cristina,Silva Jessy,Pereira Luís Gustavo,Coimbra SílviaORCID

Abstract

Key message The fasciclin-like arabinogalactan proteins organization into four groups is conserved and may be related to specific roles in developmental processes across angiosperms. Abstract Fasciclin-like arabinogalactan proteins (FLAs) are a subclass of arabinogalactan proteins (AGPs), which contain fasciclin-like domains in addition to typical AGP domains. FLAs are present across all embryophytes, and despite their low overall sequence similarity, conserved regions that define the fasciclin functional domain (FAS) have been identified, suggesting that the cell adhesion property is also conserved. FLAs in Arabidopsis have been organized into four subgroups according to the number and distribution of functional domains. Recent studies associated FLAs with cell wall-related processes where domain organization seemed to be related to functional roles. In Arabidopsis, FLAs containing a single FAS domain were found to be important for the integrity and elasticity of the plant cell wall matrix, and FLAs with two FAS domains and two AGP domains were found to be involved in maintaining proper cell expansion under salt stress conditions. The main purpose of the present work was to elucidate the expression pattern of selected FLA genes during embryo and seed development using RT-qPCR. AtFLA8 and AtFLA10, two Arabidopsis genes that stood out in previous microarray studies of embryo development, were further examined using promoter-driven gene reporter analyses. We also studied the expression of cork oak FLA genes and found that their expression partially parallels the expression patterns of the putative AtFLA orthologs. We propose that the functional organization of FLAs is conserved and may be related to fundamental aspects of embryogenesis and seed development across angiosperms. Phylogenetic studies were performed, and we show that the same basic four-subgroup organization described for Arabidopsis FLA gene classification is valid for most Arabidopsis FLA orthologs of several plant species, namely poplar, corn and cork oak.

Funder

H2020 Marie Skłodowska-Curie Actions

Fundação para a Ciência e a Tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3