A Self-supported Graphene/Carbon Nanotube Hollow Fiber for Integrated Energy Conversion and Storage

Author:

Liu Kai,Chen Zilin,Lv Tian,Yao Yao,Li Ning,Li Huili,Chen Tao

Abstract

AbstractWearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention, but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with high performance. Here, we grow aligned carbon nanotubes (CNTs) array on continuous graphene (G) tube, and their seamlessly connected structure provides the obtained G/CNTs composite fiber with a unique self-supported hollow structure. Taking advantage of the hollow structure, other active materials (e.g., polyaniline, PANI) could be easily functionalized on both inner and outer surfaces of the tube, and the obtained G/CNTs/PANI composite hollow fibers achieve a high mass loading (90%) of PANI. The G/CNTs/PANI composite hollow fibers can not only be used for high-performance fiber-shaped supercapacitor with large specific capacitance of 472 mF cm−2, but also can replace platinum wire to build fiber-shaped dye-sensitized solar cell (DSSC) with a high power conversion efficiency of 4.20%. As desired, the integrated device of DSSC and supercapacitor with the G/CNTs/PANI composite hollow fiber used as the common electrode exhibits a total power conversion and storage efficiency as high as 2.1%. Furthermore, the self-supported G/CNTs hollow fiber could be further functionalized with other active materials for building other flexible and wearable electronics.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3