Author:
Liu Zuoqing,Tang Zhengjie,Song Yufei,Yang Guangming,Qian Wanru,Yang Meiting,Zhu Yinlong,Ran Ran,Wang Wei,Zhou Wei,Shao Zongping
Abstract
AbstractReversible proton ceramic electrochemical cell (R-PCEC) is regarded as the most promising energy conversion device, which can realize efficient mutual conversion of electrical and chemical energy and to solve the problem of large-scale energy storage. However, the development of robust electrodes with high catalytic activity is the main bottleneck for the commercialization of R-PCECs. Here, a novel type of high-entropy perovskite oxide consisting of six equimolar metals in the A-site, Pr1/6La1/6Nd1/6Ba1/6Sr1/6Ca1/6CoO3−δ (PLNBSCC), is reported as a high-performance bifunctional air electrode for R-PCEC. By harnessing the unique functionalities of multiple elements, high-entropy perovskite oxide can be anticipated to accelerate reaction rates in both fuel cell and electrolysis modes. Especially, an R-PCEC utilizing the PLNBSCC air electrode achieves exceptional electrochemical performances, demonstrating a peak power density of 1.21 W cm−2 for the fuel cell, while simultaneously obtaining an astonishing current density of − 1.95 A cm−2 at an electrolysis voltage of 1.3 V and a temperature of 600 °C. The significantly enhanced electrochemical performance and durability of the PLNBSCC air electrode is attributed mainly to the high electrons/ions conductivity, fast hydration reactivity and high configurational entropy. This research explores to a new avenue to develop optimally active and stable air electrodes for R-PCECs.
Funder
Shanghai Jiao Tong University
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献