Author:
Lin Ying,Kang Qi,Wei Han,Bao Hua,Jiang Pingkai,Mai Yiu-Wing,Huang Xingyi
Abstract
AbstractPhase change materials (PCMs) can be used for efficient thermal energy harvesting, which has great potential for cost-effective thermal management and energy storage. However, the low intrinsic thermal conductivity of polymeric PCMs is a bottleneck for fast and efficient heat harvesting. Simultaneously, it is also a challenge to achieve a high thermal conductivity for phase change nanocomposites at low filler loading. Although constructing a three-dimensional (3D) thermally conductive network within PCMs can address these problems, the anisotropy of the 3D framework usually leads to poor thermal conductivity in the direction perpendicular to the alignment of fillers. Inspired by the interlaced structure of spider webs in nature, this study reports a new strategy for fabricating highly thermally conductive phase change composites (sw-GS/PW) with a 3D spider web (sw)-like structured graphene skeleton (GS) by hydrothermal reaction, radial freeze-casting and vacuum impregnation in paraffin wax (PW). The results show that the sw-GS hardly affected the phase transformation behavior of PW at low loading. Especially, sw-GS/PW exhibits both high cross-plane and in-plane thermal conductivity enhancements of ~ 1260% and ~ 840%, respectively, at an ultra-low filler loading of 2.25 vol.%. The thermal infrared results also demonstrate that sw-GS/PW possessed promising applications in battery thermal management.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
121 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献