Duplex Interpenetrating-Phase FeNiZn and FeNi3 Heterostructure with Low-Gibbs Free Energy Interface Coupling for Highly Efficient Overall Water Splitting

Author:

Zhou Qiuxia,Xu Caixia,Hou Jiagang,Ma Wenqing,Jian Tianzhen,Yan Shishen,Liu Hong

Abstract

AbstractThe sluggish kinetics of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) generate the large overpotential in water electrolysis and thus high-cost hydrogen production. Here, multidimensional nanoporous interpenetrating-phase FeNiZn alloy and FeNi3 intermetallic heterostructure is in situ constructed on NiFe foam (FeNiZn/FeNi3@NiFe) by dealloying protocol. Coupling with the eminent synergism among specific constituents and the highly efficient mass transport from integrated porous backbone, FeNiZn/FeNi3@NiFe depicts exceptional bifunctional activities for water splitting with extremely low overpotentials toward OER and HER (η1000 = 367/245 mV) as well as the robust durability during the 400 h testing in alkaline solution. The as-built water electrolyzer with FeNiZn/FeNi3@NiFe as both anode and cathode exhibits record-high performances for sustainable hydrogen output in terms of much lower cell voltage of 1.759 and 1.919 V to deliver the current density of 500 and 1000 mA cm−2 as well long working lives. Density functional theory calculations disclose that the interface interaction between FeNiZn alloy and FeNi3 intermetallic generates the modulated electron structure state and optimized intermediate chemisorption, thus diminishing the energy barriers for hydrogen production in water splitting. With the merits of fine performances, scalable fabrication, and low cost, FeNiZn/FeNi3@NiFe holds prospective application potential as the bifunctional electrocatalyst for water splitting."Image missing"

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3