Author:
Ren Li,Li Yinghui,Li Zi,Lin Xi,Lu Chong,Ding Wenjiang,Zou Jianxin
Abstract
AbstractMgH2 is a promising high-capacity solid-state hydrogen storage material, while its application is greatly hindered by the high desorption temperature and sluggish kinetics. Herein, intertwined 2D oxygen vacancy-rich V2O5 nanosheets (H-V2O5) are specifically designed and used as catalysts to improve the hydrogen storage properties of MgH2. The as-prepared MgH2-H-V2O5 composites exhibit low desorption temperatures (Tonset = 185 °C) with a hydrogen capacity of 6.54 wt%, fast kinetics (Ea = 84.55 ± 1.37 kJ mol−1 H2 for desorption), and long cycling stability. Impressively, hydrogen absorption can be achieved at a temperature as low as 30 °C with a capacity of 2.38 wt% within 60 min. Moreover, the composites maintain a capacity retention rate of ~ 99% after 100 cycles at 275 °C. Experimental studies and theoretical calculations demonstrate that the in-situ formed VH2/V catalysts, unique 2D structure of H-V2O5 nanosheets, and abundant oxygen vacancies positively contribute to the improved hydrogen sorption properties. Notably, the existence of oxygen vacancies plays a double role, which could not only directly accelerate the hydrogen ab/de-sorption rate of MgH2, but also indirectly affect the activity of the catalytic phase VH2/V, thereby further boosting the hydrogen storage performance of MgH2. This work highlights an oxygen vacancy excited “hydrogen pump” effect of VH2/V on the hydrogen sorption of Mg/MgH2. The strategy developed here may pave a new way toward the development of oxygen vacancy-rich transition metal oxides catalyzed hydride systems.
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献