Ligand Engineering in Tin-Based Perovskite Solar Cells

Author:

Li Peizhou,Cao Xiangrong,Li Jingrui,Jiao Bo,Hou Xun,Hao Feng,Ning Zhijun,Bian Zuqiang,Xi Jun,Ding Liming,Wu Zhaoxin,Dong Hua

Abstract

AbstractPerovskite solar cells (PSCs) have attracted aggressive attention in the photovoltaic field in light of the rapid increasing power conversion efficiency. However, their large-scale application and commercialization are limited by the toxicity issue of lead (Pb). Among all the lead-free perovskites, tin (Sn)-based perovskites have shown potential due to their low toxicity, ideal bandgap structure, high carrier mobility, and long hot carrier lifetime. Great progress of Sn-based PSCs has been realized in recent years, and the certified efficiency has now reached over 14%. Nevertheless, this record still falls far behind the theoretical calculations. This is likely due to the uncontrolled nucleation states and pronounced Sn (IV) vacancies. With insights into the methodologies resolving both issues, ligand engineering-assisted perovskite film fabrication dictates the state-of-the-art Sn-based PSCs. Herein, we summarize the role of ligand engineering during each state of film fabrication, ranging from the starting precursors to the ending fabricated bulks. The incorporation of ligands to suppress Sn2+ oxidation, passivate bulk defects, optimize crystal orientation, and improve stability is discussed, respectively. Finally, the remained challenges and perspectives toward advancing the performance of Sn-based PSCs are presented. We expect this review can draw a clear roadmap to facilitate Sn-based PSCs via ligand engineering.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3