Author:
Li Jingjing,Liu Zhexuan,Han Shaohua,Zhou Peng,Lu Bingan,Zhou Jianda,Zeng Zhiyuan,Chen Zhizhao,Zhou Jiang
Abstract
AbstractBiocompatible devices are widely employed in modernized lives and medical fields in the forms of wearable and implantable devices, raising higher requirements on the battery biocompatibility, high safety, low cost, and excellent electrochemical performance, which become the evaluation criteria toward developing feasible biocompatible batteries. Herein, through conducting the battery implantation tests and leakage scene simulations on New Zealand rabbits, zinc sulfate electrolyte is proved to exhibit higher biosecurity and turns out to be one of the ideal zinc salts for biocompatible zinc-ion batteries (ZIBs). Furthermore, in order to mitigate the notorious dendrite growth and hydrogen evolution in mildly acidic electrolyte as well as improve their operating stability, Sn hetero nucleus is introduced to stabilize the zinc anode, which not only facilitates the planar zinc deposition, but also contributes to higher hydrogen evolution overpotential. Finally, a long lifetime of 1500 h for the symmetrical cell, the specific capacity of 150 mAh g−1 under 0.5 A g−1 for the Zn–MnO2 battery and 212 mAh g−1 under 5 A g−1 for the Zn—NH4V4O10 battery are obtained. This work may provide unique perspectives on biocompatible ZIBs toward the biosecurity of their cell components.
Funder
Shanghai Jiao Tong University
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献