Self-Assembly of Binderless MXene Aerogel for Multiple-Scenario and Responsive Phase Change Composites with Ultrahigh Thermal Energy Storage Density and Exceptional Electromagnetic Interference Shielding

Author:

Zhu Chuanbiao,Hao Yurong,Wu Hao,Chen Mengni,Quan Bingqing,Liu Shuang,Hu Xinpeng,Liu Shilong,Ji Qinghong,Lu Xiang,Qu Jinping

Abstract

AbstractThe severe dependence of traditional phase change materials (PCMs) on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios. Here, we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing. Subsequently, a series of MXene/ K+/paraffin wax (PW) phase change composites (PCCs) were obtained via vacuum impregnation in molten PW. The prepared MXene-based PCCs showed versatile applications from macroscale technologies, successfully transforming solar, electric, and magnetic energy into thermal energy stored as latent heat in the PCCs. Moreover, due to the absence of binder in the MXene-based aerogel, MK3@PW exhibits a prime solar–thermal conversion efficiency (98.4%). Notably, MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar–thermal–electric conversion (producing 206 mV of voltage with light radiation intensity of 200 mw cm−2). An excellent Joule heat performance (reaching 105 °C with an input voltage of 2.5 V) and responsive magnetic–thermal conversion behavior (a charging time of 11.8 s can achieve a thermal insulation effect of 285 s) for contactless thermotherapy were also demonstrated by the MK3@PW. Specifically, as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions, MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value (57.7 dB) than pure MXene aerogel/PW PCC (29.8 dB) with the same MXene mass. This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3