Continuous Fabrication of Ti3C2Tx MXene-Based Braided Coaxial Zinc-Ion Hybrid Supercapacitors with Improved Performance

Author:

Shi Bao,Li La,Chen Aibing,Jen Tien-Chien,Liu Xinying,Shen Guozhen

Abstract

Highlights Ti3C2Tx MXene-based coaxial zinc-ion hybrid fiber supercapacitors (FSCs) were fabricated with braided structure, which can be prepared continuously and present excellent flexibility and ultrastability. A sports watch driven by the watch belts which weaved uses the obtained zinc-ion hybrid FSC and LED arrays lighted by the FSCs under embedding into textiles, demonstrating the great potential application in smart wearable textiles. Abstract Zinc-ion hybrid fiber supercapacitors (FSCs) are promising energy storages for wearable electronics owing to their high energy density, good flexibility, and weavability. However, it is still a critical challenge to optimize the structure of the designed FSC to improve energy density and realize the continuous fabrication of super-long FSCs. Herein, we propose a braided coaxial zinc-ion hybrid FSC with several meters of Ti3C2Tx MXene cathode as core electrodes, and shell zinc fiber anode was braided on the surface of the Ti3C2Tx MXene fibers across the solid electrolytes. According to the simulated results using ANSYS Maxwell software, the braided structures revealed a higher capacitance compared to the spring-like structures. The resulting FSCs exhibited a high areal capacitance of 214 mF cm–2, the energy density of 42.8 μWh cm−2 at 5 mV s−1, and excellent cycling stability with 83.58% capacity retention after 5000 cycles. The coaxial FSC was tied several kinds of knots, proving a shape-controllable fiber energy storage. Furthermore, the knitted FSC showed superior stability and weavability, which can be woven into watch belts or embedded into textiles to power smart watches and LED arrays for a few days.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3