Author:
Li Bin,Ruan Pengchao,Xu Xieyu,He Zhangxing,Zhu Xinyan,Pan Liang,Peng Ziyu,Liu Yangyang,Zhou Peng,Lu Bingan,Dai Lei,Zhou Jiang
Abstract
AbstractAchieving a highly robust zinc (Zn) metal anode is extremely important for improving the performance of aqueous Zn-ion batteries (AZIBs) for advancing “carbon neutrality” society, which is hampered by the uncontrollable growth of Zn dendrite and severe side reactions including hydrogen evolution reaction, corrosion, and passivation, etc. Herein, an interlayer containing fluorinated zincophilic covalent organic framework with sulfonic acid groups (COF-S-F) is developed on Zn metal (Zn@COF-S-F) as the artificial solid electrolyte interface (SEI). Sulfonic acid group (− SO3H) in COF-S-F can effectively ameliorate the desolvation process of hydrated Zn ions, and the three-dimensional channel with fluoride group (-F) can provide interconnected channels for the favorable transport of Zn ions with ion-confinement effects, endowing Zn@COF-S-F with dendrite-free morphology and suppressed side reactions. Consequently, Zn@COF-S-F symmetric cell can stably cycle for 1,000 h with low average hysteresis voltage (50.5 mV) at the current density of 1.5 mA cm−2. Zn@COF-S-F|MnO2 cell delivers the discharge specific capacity of 206.8 mAh g−1 at the current density of 1.2 A g−1 after 800 cycles with high-capacity retention (87.9%). Enlightening, building artificial SEI on metallic Zn surface with targeted design has been proved as the effective strategy to foster the practical application of high-performance AZIBs.
Publisher
Springer Science and Business Media LLC
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献