High-Index Faceted Nanocrystals as Highly Efficient Bifunctional Electrocatalysts for High-Performance Lithium–Sulfur Batteries

Author:

Jiang Bo,Tian Da,Qiu Yue,Song Xueqin,Zhang Yu,Sun Xun,Huang Huihuang,Zhao Chenghao,Guo Zhikun,Fan Lishuang,Zhang Naiqing

Abstract

AbstractPrecisely regulating of the surface structure of crystalline materials to improve their catalytic activity for lithium polysulfides is urgently needed for high-performance lithium–sulfur (Li–S) batteries. Herein, high-index faceted iron oxide (Fe2O3) nanocrystals anchored on reduced graphene oxide are developed as highly efficient bifunctional electrocatalysts, effectively improving the electrochemical performance of Li–S batteries. The theoretical and experimental results all indicate that high-index Fe2O3 crystal facets with abundant unsaturated coordinated Fe sites not only have strong adsorption capacity to anchor polysulfides but also have high catalytic activity to facilitate the redox transformation of polysulfides and reduce the decomposition energy barrier of Li2S. The Li–S batteries with these bifunctional electrocatalysts exhibit high initial capacity of 1521 mAh g−1 at 0.1 C and excellent cycling performance with a low capacity fading of 0.025% per cycle during 1600 cycles at 2 C. Even with a high sulfur loading of 9.41 mg cm−2, a remarkable areal capacity of 7.61 mAh cm−2 was maintained after 85 cycles. This work provides a new strategy to improve the catalytic activity of nanocrystals through the crystal facet engineering, deepening the comprehending of facet-dependent activity of catalysts in Li–S chemistry, affording a novel perspective for the design of advanced sulfur electrodes.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3