Author:
Shen Shen,Yi Jia,Sun Zhongda,Guo Zihao,He Tianyiyi,Ma Liyun,Li Huimin,Fu Jiajia,Lee Chengkuo,Wang Zhong Lin
Abstract
AbstractLetter handwriting, especially stroke correction, is of great importance for recording languages and expressing and exchanging ideas for individual behavior and the public. In this study, a biodegradable and conductive carboxymethyl chitosan-silk fibroin (CSF) film is prepared to design wearable triboelectric nanogenerator (denoted as CSF-TENG), which outputs of Voc ≈ 165 V, Isc ≈ 1.4 μA, and Qsc ≈ 72 mW cm−2. Further, in vitro biodegradation of CSF film is performed through trypsin and lysozyme. The results show that trypsin and lysozyme have stable and favorable biodegradation properties, removing 63.1% of CSF film after degrading for 11 days. Further, the CSF-TENG-based human–machine interface (HMI) is designed to promptly track writing steps and access the accuracy of letters, resulting in a straightforward communication media of human and machine. The CSF-TENG-based HMI can automatically recognize and correct three representative letters (F, H, and K), which is benefited by HMI system for data processing and analysis. The CSF-TENG-based HMI can make decisions for the next stroke, highlighting the stroke in advance by replacing it with red, which can be a candidate for calligraphy practice and correction. Finally, various demonstrations are done in real-time to achieve virtual and real-world controls including writing, vehicle movements, and healthcare.
Funder
Shanghai Jiao Tong University
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献