Author:
Li Liuan,Fang Shi,Chen Wei,Li Yueyue,Vafadar Mohammad Fazel,Wang Danhao,Kang Yang,Liu Xin,Luo Yuanmin,Liang Kun,Dang Yiping,Zhao Lei,Zhao Songrui,Yin Zongzhi,Sun Haiding
Abstract
AbstractPhotosensors with versatile functionalities have emerged as a cornerstone for breakthroughs in the future optoelectronic systems across a wide range of applications. In particular, emerging photoelectrochemical (PEC)-type devices have recently attracted extensive interest in liquid-based biosensing applications due to their natural electrolyte-assisted operating characteristics. Herein, a PEC-type photosensor was carefully designed and constructed by employing gallium nitride (GaN) p–n homojunction semiconductor nanowires on silicon, with the p-GaN segment strategically doped and then decorated with cobalt–nickel oxide (CoNiOx). Essentially, the p–n homojunction configuration with facile p-doping engineering improves carrier separation efficiency and facilitates carrier transfer to the nanowire surface, while CoNiOx decoration further boosts PEC reaction activity and carrier dynamics at the nanowire/electrolyte interface. Consequently, the constructed photosensor achieves a high responsivity of 247.8 mA W−1 while simultaneously exhibiting excellent operating stability. Strikingly, based on the remarkable stability and high responsivity of the device, a glucose sensing system was established with a demonstration of glucose level determination in real human serum. This work offers a feasible and universal approach in the pursuit of high-performance bio-related sensing applications via a rational design of PEC devices in the form of nanostructured architecture with strategic doping engineering.
Publisher
Springer Science and Business Media LLC