A Review on Interface Engineering of MXenes for Perovskite Solar Cells

Author:

Palei Srikanta,Murali G.,Kim Choong-Hee,In Insik,Lee Seul-Yi,Park Soo-Jin

Abstract

AbstractWith an excellent power conversion efficiency of 25.7%, closer to the Shockley–Queisser limit, perovskite solar cells (PSCs) have become a strong candidate for a next-generation energy harvester. However, the lack of stability and reliability in PSCs remained challenging for commercialization. Strategies, such as interfacial and structural engineering, have a more critical influence on enhanced performance. MXenes, two-dimensional materials, have emerged as promising materials in solar cell applications due to their metallic electrical conductivity, high carrier mobility, excellent optical transparency, wide tunable work function, and superior mechanical properties. Owing to different choices of transition elements and surface-terminating functional groups, MXenes possess the feature of tuning the work function, which is an essential metric for band energy alignment between the absorber layer and the charge transport layers for charge carrier extraction and collection in PSCs. Furthermore, adopting MXenes to their respective components helps reduce the interfacial recombination resistance and provides smooth charge transfer paths, leading to enhanced conductivity and operational stability of PSCs. This review paper aims to provide an overview of the applications of MXenes as components, classified according to their roles as additives (into the perovskite absorber layer, charge transport layers, and electrodes) and themselves alone or as interfacial layers, and their significant importance in PSCs in terms of device performance and stability. Lastly, we discuss the present research status and future directions toward its use in PSCs.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3