All-Polymer Solar Cells and Photodetectors with Improved Stability Enabled by Terpolymers Containing Antioxidant Side Chains

Author:

Zhang Chunyang,Song Ao,Huang Qiri,Cao Yunhao,Zhong Zuiyi,Liang Youcai,Zhang Kai,Liu Chunchen,Huang Fei,Cao Yong

Abstract

AbstractIt is of vital importance to improve the long-term and photostability of organic photovoltaics, including organic solar cells (OSCs) and organic photodetectors (OPDs), for their ultimate industrialization. Herein, two series of terpolymers featuring with an antioxidant butylated hydroxytoluene (BHT)-terminated side chain, PTzBI-EHp-BTBHTx and N2200-BTBHTx (x = 0.05, 0.1, 0.2), are designed and synthesized. It was found that incorporating appropriate ratio of benzothiadiazole (BT) with BHT side chains on the conjugated backbone would induce negligible effect on the molecular weight, absorption spectra and energy levels of polymers, however, which would obviously enhance the photostability of these polymers. Consequently, all-polymer solar cells (all-PSCs) and photodetectors were fabricated, and the all-PSC based on PTzBI-EHp-BTBHT0.05: N2200 realized an optimal power conversion efficiency (PCE) approaching ~ 10%, outperforming the device based on pristine PTzBI-EHp: N2200. Impressively, the all-PSCs based on BHT-featuring terpolymers displayed alleviated PCEs degradation under continuous irradiation for 300 h due to the improved morphological and photostability of active layers. The OPDs based on BHT-featuring terpolymers achieved a lower dark current at − 0.1 bias, which could be stabilized even after irradiation over 400 h. This study provides a feasible approach to develop terpolymers with antioxidant efficacy for improving the lifetime of OSCs and OPDs.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3